Расшифровка клинических лабораторных анализов
По материалам книги: Расшифровка клинических лабораторных анализов / К. Хиггинс; пер. с англ.; под ред. проф. В. Л. Эмануэля. — 3-е изд., испр. — М. : БИНОМ. Лаборатория знаний, 2008. — 376 с. ил
Глава 2. Принципы лабораторных исследований.
Лабораторное исследование пациента можно подразделить на три фазы:
- предварительную, которая включает сбор и транспортировку биологического материала в лабораторию;
- аналитическую фазу в лаборатории;
- заключительную фазу, которая включает сообщение результатов и их интерпретацию (т. н. постаналитическая фаза).
В этой главе обсуждаются некоторые общие принципы, имеющие отношение к первой, предварительной, фазе. Далее рассматриваются общие положения, касающиеся третьей фазы. Это единицы измерения, границы нормы и патологии и критические значения показателей.
ПРЕДВАРИТЕЛЬНЫЕ ПРОЦЕДУРЫ
Трудно переоценить важность правильного выполнения предварительных процедур для лабораторных исследований. Высокое качество, точность и пригодность результатов лабораторных исследований для использования в клинических условиях во многом зависят как от правильной доставки образцов в лабораторию, так и от качества процедур, выполняемых непосредственно в процессе анализа. Рассмотрим следующие основные аспекты предварительной фазы лабораторного исследования:
- направление на анализ;
- время сбора образцов;
- техника взятия проб;
- объем проб;
- упаковка и маркировка проб;
- техника безопасности при сборе и транспортировке биологических проб.
В этой главе рассматриваются только основные принципы. Более детально предварительные процедуры описаны в соответствующих главах. Однако нужно понимать, что на практике в разных лабораториях они могут отличаться в деталях. Поэтому данные правила не следует переносить формально в практику работы вашей лаборатории (комментарий редактора: Для использования в лабораториях России предоставлено пособие «Системы контроля качества для медицинских лабораторий: рекомендации для внедрения и мониторинга». / Под ред. В. Л. Эмануэля и А. Калнера. — ВОЗ, 2000 — 88 с.)
Направление на анализ
Каждая биологическая проба должна сопровождаться заполненным направлением на анализ специальной формы, подписанным медицинским работником, выдающим его, или отмеченным медсестрами в нескольких инстанциях, куда должен поступить ответ. Ошибки в направлении могут привести к тому, что пациент с опозданием получит сообщение о «плохом» анализе или к тому, что анализ вообще не попадет в медицинскую карту больного. Внимание к деталям в сопроводительных документах особенно (жизненно) важно при направлении пациентов на переливание крови. Большинство случаев неудачных трансфузий крови — результат ошибки в сопроводительной документации. Все направления на анализы должны включать следующие сведения:
- данные о пациенте, включая имя, фамилию, отчество, дату рождения и номер истории болезни;
- отделение (терапевтическое, хирургическое), № палаты, амбулатория;
- биологический материал (венозная кровь, моча, биопсия и т. д.);
- дата и время сбора анализа;
- наименование теста (сахар крови, полный подсчет клеток крови и т. п.);
- клинические детали (эти сведения должны пояснять, почему необходимо выполнение именно данного анализа; как правило, это предварительный диагноз или симптомы);
- описание терапии, если принимаемые больным препараты могут искажать результаты теста или их интерпретацию;
- если требуется, отметка о необходимости срочного выполнения анализа;
- отметка о стоимости и оплате процедуре.
Время сбора образцов
Транспортировка образцов биологического материала в лабораторию по возможности должна быть организована таким образом, чтобы анализ проводился без неоправданных задержек. Плохо, если пробы оставляют на несколько часов или на ночь перед отправкой в лабораторию, — во многих случаях они становятся непригодны для анализа. Для выполнения некоторых биохимических тестов (например, для определения уровня гормонов в крови) необходимо брать пробы в определенное время суток, для других (например, для определения уровня глюкозы в крови) очень важно знать время сбора образцов. Иногда (в частности, при анализе газов крови) требуется немедленное выполнение теста после взятия пробы, поэтому необходимо иметь полную готовность лаборатории. Образцы для микробиологических исследований лучше выполнять перед назначением антибиотикотерапии, которая подавляет рост микроорганизмов в культуре.
Техника взятия проб
Взятие крови из вены
Для проведения большинства биохимических тестов нужна венозная кровь, которую получают, используя технику, называемую венопункцией. Венопункцию выполняют при помощи шприца с иглой или специальной шприц-пробирки (рис. 2.1).
- Пациент может бояться самой процедуры венопункции. Поэтому важно спокойно и доверительно, простыми словами объяснить ему, как берется кровь и что дискомфорт и болезненные ощущения обычно исчезают после введения иглы в вену.
- Если пациенту когда-либо ранее было плохо при взятии крови, лучше предложить ему лечь во время процедуры
- Если ранее больной получал растворы внутривенно, не следует забирать кровь на анализ из той же руки. Это предотвращает риск загрязнения образца крови вводимым внутривенно препаратом.
- Гемолиз (повреждение эритроцитов во время взятия крови) может сделать пробу, непригодной для анализа. Гемолиз может происходить при быстрой эвакуации крови через тонкую иглу или при сильном встряхивании пробирки. При использовании обычного шприца иглу удаляют до помещения пробы в контейнер.
- Наложение жгута на длительное время может искажать результаты анализа. Нужно избегать этого и не забирать кровь, если жгут используется более 1 мин. Попытайтесь взять кровь из вены на второй руке.
- Хотя v. cephalicaи v. basilica наиболее удобны для взятия крови, в том случае, если они не доступны, можно использовать вены тыльной стороны руки или ноги.
Рис. 2.1. Взятие венозной крови при помощи системы Vacutainer
Система Vacutainer: Необходимое дополнительное оборудование: |
|
Возьмите иглу в области окрашенного участка и надорвите белую бумажную упаковку. Удалите ее вместе с белым пластиковым защитным колпачком. Систему НЕЛЬЗЯ ИСПОЛЬЗОВАТЬ, если бумажная упаковка нарушена. |
|
Вставьте иглу в иглодержатель и удалите цветную защитную пленку с иглы. | |
Наложите жгут на 10 см выше локтя, чтобы вена стала видимой и было удобно выбрать место для пункции. Протрите место прокола тампоном, смоченным в спирте: дайте ему подсохнуть. |
|
Удалите защитный колпачок с иглы.
Положите руку пациента на валик и разогните ее в локте. Введите иглу в вену срезом вверх. |
|
Присоедините собирательную пробирку к иглодержателю.
Не двигая иглу внутри вены, аккуратным, но резким движением протолкните пробирку до конца иглодержателя. Снимите жгут, когда кровь начнет поступать в пробирку. |
|
Уберите собирательную пробирку, когда она наполнится кровью. Продолжайте удерживать иглу и иглодержатель в том же положении (для дальнейшего сбора крови присоедините следующую пробирку так же, как было описано выше). |
|
Отсоедините пробирку от иглодержателя.
Переверните пробирку 8-10 раз, чтобы кровь перемешалась с находящимся в пробирке стабилизатором. |
|
Удалите иглодержатель с иглой из вены.
Положите на место прокола ватный тампон и скажите пациенту, чтобы он согнул руку в локте на 1-2 мин. |
|
Утилизируйте иглу и иглодержатель (если он одноразовый) в соответствии с инструкцией по технике безопасности.
Маркируйте пробу по правилам, принятым в лаборатории. |
Взятие капиллярной крови
Капиллярная кровь протекает по мельчайшим сосудам под кожей и может быть легко получена для анализа при помощи скальпеля-копья из пальца или (обычно у младенцев) из пятки. Эту технику после некоторой тренировки может освоить и сам пациент. Ее используют, например, больные диабетом для мониторинга концентрации глюкозы в крови.
Взятие артериальной крови
Единственный тест, для проведения которого требуется артериальная кровь, — это анализ газов крови. Процедура сбора артериальной крови, более опасная и болезненная, чем венопункция, описана в главе 6.
Сбор мочи
Обычно используют четыре способа сбора мочи:
- в середине мочеиспускания (MSU);
- при помощи катетера (CSU);
- сбор утренней порции (EMU);
- сбор суточной мочи, т. е. объединение всех порций мочи за 24 ч.
Характер анализа определяет, какой из этих способов сбора мочи использовать. Для большинства неколичественных методов (например, определение плотности мочи или микробиологический анализ) используется MSU. Это небольшая порция мочи (10-15 мл), собранная во время мочеиспускания в любое время суток. CSU — это проба мочи, собранная у больного при помощи мочевого катетера. Детали сбора MSU и CSU для микробиологического исследования описаны в главе 20.
Самая первая утренняя порция мочи (EMU) наиболее концентрированная, поэтому в ней удобно определять вещества, присутствующие в крови в минимальных концентрациях. Так, она используется для проведения теста на беременность. Этот тест основан на определении хорионического гонадотропина человека (ХГЧ, HCG) — гормона, который обычно не присутствует в моче, но в первые несколько месяцев беременности появляется в нарастающих количествах. На ранних сроках концентрация этого гормона столь мала, что если использовать неконцентрированную мочу (не EMU), то можно получить ложноотрицательный результат.
Иногда необходимо точно знать, сколько определенного вещества (например, натрия или калия) теряется ежедневно с мочой. Количественно определение можно провести только в том случае, если собрать суточную мочу. Подробное описание этой процедуры приведено в главе 5.
Взятие на анализ образцов ткани (биопсия)
Очень краткое описание техники биопсии, необходимой для выполнения гистологического исследования, уже приводилось в главе 1. За проведение этой процедуры всегда отвечает врач, поэтому она не рассматривается подробно в данном руководстве. Однако медсестры участвуют во взятии проб цервикальных клеток при проведении анализа влагалищных мазков (комментарий редактора: Учетные формы для выполнения цитологических исследований нормированы приказом МЗ РФ №174 от 24.04.2003 г.).
Объем проб
Объем проб крови, требуемый для тестирования, определяется прежде всего оснащением конкретной лаборатории. В целом по мере технологического прогресса существенно уменьшается объем пробы, необходимый для проведения того или иного анализа. Запись на бланке направления «Недостаточно материала, анализ повторить» сейчас встречается все реже. Во всех лабораториях имеется перечень тестов, где приведены минимально необходимые для их выполнения объемы проб крови. Любой сотрудник, забирающий кровь на анализ, должен знать эти нормы. Некоторые пробирки для взятия крови содержат следовые количества химических консервантов и/или антикоагулянтов, которые определяют оптимальное количество собираемой в них крови. В таком случае на стенке пробирки имеется соответствующая метка, до которой нужно набирать кровь. Если это не берется во внимание, могут быть получены ошибочные результаты. Хотя количество мочи MSU и CSU не является критическим, объем пробы при сборе суточной мочи очень важен, поэтому собирают все порции мочи за 24-часовой период, даже если для этого потребуется дополнительная емкость.
В целом количество биологического материала (размер образца) важно для успешного выделения изолятов бактерий. Более вероятно, что удастся изолировать бактерии из большого количества мокроты, чем из незначительного. Использование шприца и иглы для отсасывания гноя с большей вероятностью, чем взятие мазка, позволяет выделить возбудителя инфекции. При недостаточном объеме крови, добавляемой в культуральную среду, могут быть получены ложноотрицательные результаты.
Упаковка проб
Лаборатории соблюдают определенные правила использования бутылей и контейнеров. Каждый тип контейнеров служит для конкретных целей. Для получения достоверных результатов необходимо, чтобы определенные контейнеры использовались при выполнении определенных тестов. Иногда контейнеры для сбора крови содержат некоторые химические вещества (табл. 2.1) в виде жидкости или порошка. Их добавление преследует две цели: они предохраняют кровь от свертывания и поддерживают нативную структуру кровяных клеток или концентрацию ряда компонентов крови. Поэтому важно, чтобы эти химикаты перемешались с собираемой кровью.
Консерванты могут быть необходимы при сборе суточной мочи. Потребность в них определяется тем, какие компоненты мочи исследуются.
Все контейнеры, в которые собирается материал для микробиологического исследования (моча, мокрота, кровь и т. д.) должны быть стерильными и не могут использоваться, если их изоляция нарушена. Некоторые бактерии выживают вне организма человека, только если сохраняются в специальных средах для транспортировки.
Для сохранения биоптатов необходима их фиксация в формалине. Поэтому контейнеры, предназначенные для транспортировки образцов тканей, содержат этот фиксатор.
Все контейнеры с биологическим материалом должны иметь маркировку — полное имя пациента, дату рождения и местонахождение (отделение, клиника или адрес). Лаборатории получают многие сотни проб каждый день, среди которых могут встречаться два образца или даже более от пациентов с одинаковыми фамилиями. Если результат анализа нужно вернуть, чтобы внести его в медкарту, очень важно, чтобы запись была сделана точно и по ней можно было бы легко идентифицировать больного.
Неправильно маркированные пробы могут быть не приняты лабораторией, в результате чего пациенту придется заново сдавать анализ, что потребует дополнительных затрат времени и усилий как со стороны больного, так и со стороны медицинского персонала.
Таблица 2.1.Основные химические добавки, используемые при взятии крови на анализ
Этилендиаминтетраацетат (ЭДТА) |
Антикоагулянт, который предохраняет кровь от свертывания, связывая и эффективно удаляя ионы кальция, присутствующие в плазме (кальций необходим для свертывания крови). ЭДТА также защищает клетки крови от разрушения. Добавляют в пробирки для сбора крови с целью полного подсчета клеток крови и выполнения некоторых других гематологических тестов |
Гепарин (в виде натриевой или калиевой соли этой кислоты, т. е. натрий гепарина или калий гепарина) |
Антикоагулянт, который предохраняет кровь от свертывания, ингибируя превращение протромбина в тромбин. Добавляют в пробирки для сбора крови с целью проведения биохимических исследований, для которых необходима плазма. Антикоагулянтные свойства гепарина используются в терапии |
Цитрат (в виде натриевой соли, т. е. цитрата натрия) |
Антикоагулянт, который предохраняет кровь от свертывания, связывая ионы кальция (подобно ЭДТА). Добавляют в пробирки для сбора крови с целью изучения процессов свертывания |
Оксалат (в виде натриевой или аммонийной соли, т. е. оксалата натрия или аммония) |
Антикоагулянт, который предохраняет кровь от свертывания, связывая ионы кальция (подобно ЭДТА). Используют вместе с фторидом натрия (см. ниже) для определения содержания глюкозы в крови |
Фторид натрия |
Это ферментный яд, который прекращает метаболизацию глюкозы в крови после ее сбора, т. е. сохраняет ее концентрацию. Используется вместе с оксалатом аммония специально для определения содержания глюкозы в крови |
Техника безопасности при сбореи транспортировке биологических проб
Все лаборатории имеют собственные утвержденные правила техники безопасности при сборе и транспортировке биологического материала, основанные на предположении, что все собираемые образцы потенциально опасны. Сотрудники, участвующие в этих процедурах, должны знать правила техники безопасности. Среди многих опасностей, которые могут таить пробы биологического материала, особо следует отметить вирусы иммунодефицита человека (ВИЧ) и вирусы гепатитов, способные передаваться при контакте с инфицированной кровью. Туберкулезом можно заразиться при контакте с мокротой больного, а желудочно-кишечными инфекциями — при контакте с зараженными фекалиями. Правильно организованная работа должна максимально снизить риск инфицирования персонала лаборатории и больных. Одной из составляющих хорошей лабораторной практики (GLP) является соблюдение правил техники безопасности. Ниже приведены некоторые общие положения техники безопасности, которые необходимо соблюдать при сборе и транспортировке биологического материала.
- Чтобы снизить риск инфицирования при взятии проб биологического материала, следует использовать одноразовые хирургические перчатки. Открытые раны часто являются воротами для вирусных и бактериальных инфекций.
- Необходимо надежное хранение шприцев и игл. Преимущественно через них и контактирует сотрудник лаборатории с потенциально инфицированной кровью больного.
- Большую и часто серьезную опасность представляет собой нарушение целостности упаковки проб. Ее можно предотвратить, если не заполнять пробирки доверху и использовать надежные колпачки. В большинстве лабораторий разработаны правила, соблюдение которых предотвращает утечку биологического материала.
- Сбор проб должен производиться в соответствии с принятыми в лаборатории правилами.
- Если известно, что больной инфицирован ВИЧ или вирусами гепатита, при взятии проб используют дополнительные меры защиты (защитные очки, халаты). Пробы от такого пациента должны быть четко маркированы несколькими способами, принятыми в данной лаборатории.
К ВОПРОСУ ОБ ИНТЕРПРЕТАЦИИ РЕЗУЛЬТАТОВ ЛАБОРАТОРНЫХ ИССЛЕДОВАНИЙ
Известно, что во многих лабораториях методы оценки результатов лабораторных исследований различаются. Все, кто имеет отношение к интерпретации результатов, должны знать, что они могут быть выражены количественно, полуколичественно и качественно. Например, данные гистологических исследований качественные: они представлены в виде специализированного описания гистологических препаратов, приготовленных из образцов тканей и проанализированных под микроскопом. Гистолог дает клиническую оценку тех или иных микроскопических отклонений конкретного образца от нормы. Результаты микробиологического анализа могут быть и качественными, и полуколичественными. В текстовой части заключения сообщается об идентифицированных патогенных микроорганизмах, а их чувствительность к антибиотикам оценивается полуколичественно. Напротив, результаты биохимических и гематологических исследований являются количественными, выраженными в конкретных цифрах. Как и все другие измеряемые показатели (масса тела, температура, пульс), количественные результаты лабораторных анализов выражаются в определенных единицах измерения.
Единицы измерения, используемые в клинических лабораториях
Международная система единиц (СИ)
Начиная с 70-х годов XX века, в Великобритании все результаты измерений в научной и клинической практике стараются, насколько это возможно, выражать в единицах СИ (Международная система единиц предложена в 1960 г.). В США для результатов лабораторных исследований продолжают использовать внесистемные единицы, что необходимо учитывать при интерпретации данных, приведенных в американских медицинских изданиях для врачей и среднего медицинского персонала. Из семи основных единиц СИ (табл. 2.2) в клинической практике используют только три:
- метр (м);
- килограмм (кг);
- моль (моль).
Таблица 2.2.Основные единицы СИ
Единица СИ |
Мера измерения |
Сокращение |
Метр |
длины |
м |
Килограмм |
массы (веса)* |
кг |
Секунда |
времени |
с |
Ампер |
силы электрического тока |
А |
Кельвин |
термодинамической температуры |
К |
Моль |
количества вещества |
моль |
Кандела |
силы света |
Кд |
* В данном контексте эти понятия рассматривать как эквивалентные.
Все, безусловно, знакомы с метром как единицей длины и с килограммом как единицей массы или веса. Понятие же моля требует, на наш взгляд, пояснений.
Что такое моль?
Моль — это количество вещества, масса которого в граммах эквивалентна его молекулярной (атомной) массе. Это удобная единица измерения, так как 1 моль любого вещества содержит одинаковое количество частиц — 6,023 х 1023 (т. н. число Авогадро).
Примеры
Чемуравен 1 моль натрия (Na)?
Натрий представляет собой одноатомный элемент с атомной массой 23. Следовательно, 1 моль натрия равен 23 г натрия.
Чему равен 1 моль воды (Н20)?
Молекула воды состоит из двух атомов водорода и одного атома кислорода.
Атомная масса водорода равна 1.
Атомная масса кислорода равна 16.
Следовательно, молекулярная масса воды равна 2 x 1 + 16 = 18.
Таким образом, 1 моль воды равен 18 г воды.
Чему равен 1 моль глюкозы?
Молекулы глюкозы состоит из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. Молекулярная формула глюкоза записывается как С6Н12О6.
Атомная масса углерода равна 12.
Атомная масса водорода равна 1.
Атомная масса кислорода равна 16.
Следовательно, молекулярная масса глюкоза равна 6 х 12 + 12 х 1 + 6 х 16 = 180.
Таким образом, 1 моль глюкозы равен 180 г глюкозы.
Итак, 23 г натрия, 18 г воды и 180 г глюкозы содержат по 6,023 х 1023 частиц (атомов в случае натрия или молекул в случае воды и глюкозы). Знание молекулярной формулы какого-либо вещества позволяет использовать моль в качестве единицы его количества. Для некоторых молекулярных комплексов, присутствующих в крови (прежде всего белков), точная молекулярная масса не определена. Соответственно, для них невозможно использовать такую единицу измерения как моль.
Десятичные кратные и дольные единицы СИ
Если основные единицы СИ слишком малы или велики для измерения показателя, используют десятичные кратные или дольные единицы. В табл. 2.3 представлены наиболее часто используемые для выражения результатов лабораторных исследований вторичные СИ-единицы длины, массы (веса) и количества вещества.
Единицы измерения объема
Строго говоря, СИ-единицы объема должны базироваться на метре, например — метр кубический (м3), сантиметр кубический (см ), миллиметр кубический (мм3) и т. д. Однако когда вводили Международную систему единиц, было решено оставить литр в качестве единицы измерения жидкостей, так как эта единица использовалась практически повсеместно и она практически точно равна 1000 см3 . Фактически 1 литр равен 1000,028 см3
Литр (л) по сути является основной СИ-единицей объема в клинической и лабораторной практике применяются следующие производные от литра единицы объема:
децилитр (дл) — 1/10 (10-1) литра,
сантилитр (сл) — 1/100 (10-2) литра,
миллилитр (мл) — 1/1000 (10-3) литра
микролитр (мкл) - 1/1 000 000 (10-6) литра.
Запомните: 1 мл = 1,028 см3.
Таблица 2.3. Вторичные СИ-единицы длины, массы (веса) и количества вещества, используемые в лабораторной практике
Основная единица длины — метр (м)
Вторичные единицы:
Сантиметр (см) — 1/100 (10-2) метра; 100 см = 1 м
Миллиметр (мм) — 1/1000 (10-3) метра; 1000 мм = 1 м, 10 мм = 1 см
Микрометр (мкм) — 1/1 000 000 (10-6) метра; 1 000 000 мкм = 1 м, 10 000 мкм = 1 см, 1000 мкм = 1 мм
Нанометр (нм) — 1/1 000 000 000 (10-9) метра; 1 000 000 000 нм = 1 м, 10 000 000 нм = 1 см, 1 000 000 нм = 1 мм, 1000 нм = 1 мкм
Основная единица массы (веса) — килограмм (кг)
Вторичные единицы:
Грамм (г) — 1/1000 (10-3) килограмма; 1000 г = 1 кг
Миллиграмм (мг) — 1/1000 (10-3) грамма; 1000 мг = 1 г, 1 000 000 мг = 1 кг
Микрограмм (мкг) — 1/1000 (10-3) миллиграмма; 1000 мкг = 1 мг, 1 000 000 мкг = 1 г,
1 000 000 000 мкг = 1 кг
Нанограмм (нг) — 1/1000 (10-3) микрограмма; 1000 нг = 1 мкг, 1 000 000 нг = 1 мг, 1 000 000 000 нг = 1 г, 1 000 000 000 000 нг = 1 кг
Пикограмм (пг) — 1/1000 (10-3) нанограмма; 1000 пг = 1 нг, 1 000 000 пг = 1 мкг, 1 000 000 000 = 1 мг,
1 000 000 000 000 пг = 1 г
Основная единица количества вещества — моль (моль)
Вторичные единицы:
Миллимолъ (ммоль) — 1/1000 (10-3) молей; 1000 ммоль = 1 моль
Микромоль (мкмолъ) — 1/1000 (10-3) миллимолей; 1000 мкмоль = 1 ммоль, 1 000 000 мкмоль = 1 моль
Наномоль (нмоль) — 1/1000 (10-3) микромолей; 1000 нмоль = 1 мкмоль, 1 000 000 нмоль = 1 ммоль,
1 000 000 000 нмоль = 1 моль
Пикомоль (пмолъ) — 1/1000 (10-3) наномолей; 1000 пмоль = 1 нмоль, 1 000 000 пмоль = 1 мкмоль,
1 000 000 000 пмоль = 1 ммоль
Единицы концентрации
Практически все количественные лабораторные анализы включают определение концентрации того или иного веществ в крови или моче. Концентрацию можно выразить как количество или массу (вес) вещества, содержащееся в определенном объеме жидкости. Единицы концентрации, таким образом, состоят из двух элементов — единиц массы (веса) и единиц объема. Например, если мы взвесили 20 г соли и растворили ее в 1 л (объем) воды, то получился раствор соли с концентрацией 20 г на 1 л (20 г/л). В этом случае единица массы (веса) — это грамм, единица объема — литр, а СИ-единица концентрации — г/л. Если можно точно измерить молекулярную массу вещества (для многих веществ, определяемых в лабораторных условиях она известна), то для расчета концентрации используют единицу количества вещества (моль).
Приведем примеры использования разных единиц для выражения результатов лабораторных анализов.
Что означает фраза: «Натрий плазмы равен 144 ммоль/л»?
Это означает,что в каждом литре плазмы содержится 144 ммоль натрия.
Что означает выражение: «Альбумин плазмы составляет 23 г/л»?
Это означает, что в каждом литре плазмы содержится 23 г альбумина.
Что означает результат: «Железо плазмы составляет 9 мкмоль/л»?
Это означает, что в каждом литре плазмы содержится 9 мкмоль железа.
Что значит запись: «В12 плазмы составляет 300 нг/л»?
Это означает, что в каждом литре плазмы содержится 300 нг витамина В12.
Единицы подсчета клеток крови
Большинство гематологических исследований включает подсчет концентрации клеток в крови. В данном случае единицей количества является число клеток, а единицей объема — опять же литр. В норме здоровый человек имеет от 4 500 000 000 000 (т. е. 4,5 х 1012) до 6 500 000 000 000 (т. е. 6,5 х 1012) эритроцитов в каждом литре крови. Таким образом, за единицу количества эритроцитов в крови принимают 1012/л. Это позволяет использовать упрощенные цифры, так что на практике можно услышать, как врач говорит пациенту, что у него количество эритроцитов в крови равно 5,3. Это, конечно, не означает, что эритроцитов в крови всего 5,3. На самом деле данный показатель равен 5,3 х 1012/л. Лейкоцитов в крови значительно меньше, чем эритроцитов, поэтому единицей их подсчета является 109 /л.
Колебания нормальных значений
Когда выполнены измерения каких-либо физиологических параметров (например, массы тела, пульса и др.), результаты интерпретируют, сравнивая их с нормальными значениями. Это справедливо и для результатов лабораторных исследований. Для всех количественных тестов определены границы нормальных значений, что помогает оценивать результаты анализа пациента. Биологическое разнообразие не позволяет провести четкие границы между нормальными и ненормальными значениями массы тела, роста или каких-либо показателей крови и мочи. Использование термина «референсные значения» вместо термина «нормальные значения» учитывает это ограничение. Область референсных значений определяется на основании результатов измерения того или иного показателя в большой популяции практически здоровых («нормальных») людей.
График, приведенный на рис. 2.2, иллюстрирует результаты измерений концентрации гипотетической субстанции X в крови в большой популяции здоровых индивидов (референсная популяция) и у больных с гипотетическим заболеванием Y.
Так как уровень субстанции X обычно растет при заболевании Y, его можно использовать как гематологический показатель, подтверждающий диагноз у пациентов с симптомами заболевания Y. График показывает, что концентрация субстанции X у здоровых людей колеблется в пределах от 1 до 8 ммоль/л. Вероятность того, что показатель у конкретного пациента находится в нормальных пределах уменьшается по мере его удаления от среднего показателя в референс-популя-ции. Крайние значения «нормального» диапазона могут на самом деле сопутствовать заболеванию Y. Чтобы учесть это, область нормальных значений определяют, исключая обычно по 2,5% полученных в популяции результатов, лежащих на границах диапазона. Таким образом, референс-диапазон ограничивают 95% результатов, полученных в популяции здоровых людей. В рассмотренном случае он составляет 1,9-6,8 ммоль/л используя область нормальных значений, мы можем определить тех, кто болен заболеванием Y. Понятно, что пациенты, у которых концентрация субстанции X выше 8,0 ммоль/л, больны заболеванием Y, а те, у которых этот показатель ниже 6,0 ммоль/л, — нет. Однако показатели от 6,0 до 8,0 ммоль/л, попадающие в заштрихованную зону, не столь определенны.
Недостаточная определенность результатов, попадающих в пограничные области, — типичная проблема диагностических лабораторий, которую необходимо учитывать при их интерпретации. Например, если границы нормальных значений концентрации натрия в крови в данной лаборатории определены от 135 до 145 ммоль/л, то нет сомнений в том, что результат 125 ммоль/л свидетельствует о наличии патологии и необходимости лечения. Напротив, хотя единичный результат 134 ммоль/л выходит за пределы нормы, это еще не означает, что пациент болен. Помните, что у 5% людей (у одного из двадцати) в общей популяции показатели находятся на границах референсного диапазона.
Рис. 2.2. Демонстрация нормального диапазона колебаний концентрации гипотетического вещества X и частичного совпадения величин в группе здоровых лиц и в группе лиц, страдающих условной болезнью Y (см. объяснение в тексте).
Факторы, влияющие на область нормальных значений
Существуют физиологические факторы, которые могут влиять на границы нормы. К ним относятся:
- возраст пациента;
- его пол;
- беременность;
- время дня, в которое брали пробу.
Так, уровень мочевины в крови повышается с возрастом, а концентрации гормонов различны у взрослых мужчин и женщин. Беременность может изменять результаты тестирования функции щитовидной железы. Количество глюкозы в крови колеблется в течение дня. Многие лекарственные средства и алкоголь влияют так или иначе на результаты анализа крови. Природа и степень физиологических и лекарственных влияний более подробно обсуждаются при рассмотрении соответствующих тестов. В конце концов на область нормальных значений показателя влияют аналитические методы, используемые в конкретной лаборатории. При интерпретации результатов анализа больного следует ориентироваться на референс-диапазон, принятый в той лаборатории, где этот анализ выполнялся. В данной книге приведены диапазоны нормальных значений показателей, на которые можно ориентироваться как на справочные, однако они сопоставимы с нормами, принятыми в отдельных лабораториях.
Критические значения
Если результаты лабораторного исследования выходят за границы нормы, медицинская сестра должна знать, при каких значениях показателя требуется немедленная медицинская помощь. Нужно ли немедленно извещать врача в таких случаях? Концепция критических значений (иногда неоправданно называемых «паническими») помогает принять в этой области правильное решение. Критические значения определяются при таком патофизиологическом состоянии, которое настолько отличается от нормального, что является жизнеугрожающим, если не принять соответствующих экстренных мер [1]. Не все тесты имеют критические значения показателей, но там, где они есть, вы сможете найти их в этой книге наряду с областью нормальных значений. Как и границы нормы, области критических значений определяются для условий каждой конкретной лаборатории. Как при интерпретации результатов анализа данного пациента важно использовать нормы именно той лаборатории, в которой производилось исследование, так же медсестрам следует руководствоваться локальным протоколом, принятым в отношении критических значений показателей.
РАЗЛИЧИЯ МЕЖДУ СЫВОРОТКОЙ И ПЛАЗМОЙ
На протяжении всей книги будут использоваться термины «сыворотка крови» (или просто сыворотка) и «плазма крови» (или просто плазма). Поэтому важно уже во вступительной главе дать точные определения этим понятиям. Кровь состоит из клеток (эритроцитов, лейкоцитов и тромбоцитов), суспендированных в жидкости, которая представляет собой раствор многих различных неорганических и органических веществ. Эта и есть та жидкость, которая анализируется в большинстве биохимических и некоторых гематологических тестах. Первым этапом выполнения всех этих тестов является отделение жидкой части крови от клеток. Физиологи называют жидкую часть крови плазмой. Свертывание крови осуществляется при превращении растворенного в ней белка фибриногена в нерастворимый фибрин. Надосадочная жидкость, уже не содержащая фибриноген, после свертывания крови, называется сывороткой. Различие между плазмой и сывороткой детерминируется типом пробирки, в которую собирают кровь. Если для этой цели используют обычную пробирку без всяких добавок, то кровь сворачивается и образуется сыворотка. Если же в пробирку добавлены антикоагулянты, кровь остается жидкой (не сворачивается). Жидкая часть крови, которая остается после удаления клеток, называется плазмой. За некоторыми важными исключениями (прежде всего это коагуляционные тесты) результаты исследования сыворотки и плазмы в сущности одинаковы. Поэтому выбор сыворотки или плазмы в качестве материала для анализа — прерогатива лаборатории.
История болезни 1
На второй день после факультативной операции 46-летний Алан Говард почувствовал себя плохо. У него взяли кровь для проведения биохимического анализа и общего анализа крови. Среди полученных результатов были следующие:
|
|
Референс-диапазон |
Натрий плазмы |
135 ммоль/л |
135-145 |
Калий плазмы |
8,0 ммоль/л |
3,5-5,2 |
Бикарбонат плазмы |
28 ммоль/л |
25-35 |
Мочевина плазмы |
5,5 ммоль/л |
2,5-6,6 |
Кальций плазмы |
1,1 ммоль/л |
2,35-2,75 |
Общий анализ крови в норме. Обнаружив, что концентрации калия и кальция у пациента существенно отличаются от нормы, медсестра немедленно информировала об этом домашнего врача, который взял кровь на анализ повторно. Через 20 мин из лаборатории телефонировали о том, что показатели нормализовались.
Обсуждение истории болезни
Кровь, взятая для подсчета форменных элементов, должна быть защищена от свертывания. Для этого в пробирку добавляют антикоагулянт, называемый калиевой солью ЭДТА (К+-ЭДТА). Это вещество ведет себя в растворе как хелатирующий агент, эффективно связывающий ионы кальция. Помимо предохранения крови от свертывания, К+-ЭДТА имеет два побочных эффекта: повышение концентрации калия и понижение уровня кальция в крови. В небольшой по объему пробе крови, предназначенной для автоматического анализа крови, содержалось достаточно много антикоагулянта для того, чтобы существенно увеличить уровень калия и снизить концентрацию кальция. Эта история болезни демонстрирует, что кровь стабилизированная К+-ЭДТА, не удобна для определения уровня калия и кальция. Она является примером того, как ошибки в ходе взятия проб оказывают существенное влияние на результат лабораторного исследования. В данном случае полученные результаты были не совместимы с жизнью, поэтому ошибку быстро выявили. Если же изменения результатов вследствие нарушений процедур взятия и транспортировки образцов биологического материала не столь велики, они могут оказаться незамеченными и, следовательно, принести больший вред.
Цитируемая литература
1. Emancipator К. (1997) Critical values — ASCP Practice Parameter. Am. J. Clin. Pathol. 108: 247-53.
Дополнительная литература
Campbell J. (1995) Making sense of the technique of venepuncture. Nursing Times 91(31): 29-31.
Ravel R. (1995) Various factors affecting laboratory test interpretation. In Clinical Laboratory Medicine, 6th edn, pp. 1-8. Mosby, Missouri
Ruth E., McCall K. & Tankersley CM. (1998) Phlebotomy Essentials, 2nd edn Lippincott, Philadelphia.
Обеспечение качества лабораторных исследований. Преаналитический этап. / Под ред. проф. Меньшикова В. В. — М.: Лабинформ, 1999. — 320 с.