главная

зоология

ботаника

физиология

скачать

вопрос-ответ

FAQ

ссылки

контакты

поддержка


МЕНДЕЛЯ ЗАКОНЫ


МЕНДЕЛЯ ЗАКОНЫ, установленные Г. Менделем закономерности распределения в потомстве наследственных признаков. Основой для формулировки законов Менделя послужили многолетние (1856–63) опыты по скрещиванию нескольких сортов гороха» Современники Г. Менделя не смогли оценить важности сделанных им выводов (его работа была доложена в 1865 году и вышла в свет в 1866 году), и лишь в 1900 году эти закономерности были переоткрыты и правильно оценены независимо друг от друга К. Корренсом, Э. Чермаком и X. Де Фризом. Выявлению этих закономерностей способствовало применение строгих методов подбора исходного материала, специальные схемы скрещиваний и учёта результатов экспериментов. Признание справедливости и значения законов Менделя в начале XX века связано с определенными успехами цитологии и формированием ядерной гипотезы наследственности. Механизмы, лежащие в основе законов Менделя, были выяснены благодаря изучению образования половых клеток, в частности поведения хромосом в мейозе, и доказательству хромосомной теории наследственности.

Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку. При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование), как это имело место в опытах Менделя, или, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготны — Аа), а значит, и по фенотипу.

Закон расщепления, или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определенных соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения. Так, в случае полного доминирования выявляются 75% особей с доминантным и 25% с рецессивным признаком, т. е. два фенотипа в отношении 3:1 (рис. 1). При неполном доминировании и кодоминировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% — фенотипы исходных родительских форм, т. е. наблюдают расщепление 1:2:1. В основе второго закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов первого поколения гамет двух типов, в результате чего среди гибридов второго поколения выявляются особи трёх возможных генотипов в соотношении 1АА:2Аа:1аа. Конкретные типы взаимодействия аллелей и дают расщепления по фенотипу в соответствии со вторым законом Менделя.

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя, утверждает, что каждая пара альтернативных признаков ведёт себя в ряду поколений независимо друг от друга, в результате чего среди потомков второго поколения в определенном соотношении появляются особи с новыми (по отношению к родительским) комбинациями признаков. Например, при скрещивании исходных форм, различающихся по двум признакам, во втором поколении выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (случай полного доминирования). При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два — новые. Этот закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом (рис. 2). Например, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения 4 типов гамет (АВ, Ab, аВ, ab) и после образования зигот — закономерному расщеплению по генотипу и соответственно по фенотипу.

Как один из законов Менделя в генетической литературе часто упоминают закон чистоты гамет. Однако, несмотря на фундаментальность этого закона (что подтверждают результаты тетрадного анализа), он не касается наследования признаков и, кроме того, сформулирован не Менделем, а У. Бэтсоном (в 1902).

Для выявления законов Менделя в их классической форме необходимы: гомозиготность исходных форм, образование у гибридов гамет всех возможных типов в равных соотношениях, что обеспечивается правильным течением мейоза; одинаковая жизнеспособность гамет всех типов, равная вероятность встречи любых типов гамет при оплодотворении; одинаковая жизнеспособность зигот всех типов. Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении, либо к искажению соотношения различных гено- и фенотипов. Законы Менделя, вскрывшие дискретную, корпускулярную природу наследственности, имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. Для полиплоидов выявляют принципиально те же закономерности наследования, однако числовые соотношения гено- и фенотипических классов отличаются от таковых у диплоидов. Соотношение классов изменяется и у диплоидов в случае сцепления генов («нарушение» третьего закона Менделя). В целом законы Менделя справедливы для аутосомных генов с полной пенетрантностью и постоянной экспрессивностью. При локализации генов в половых хромосомах или в ДНК органоидов (пластиды, митохондрии) результаты реципроксных скрещиваний могут различаться и не следовать законам Менделя, чего не наблюдается для генов, расположенных в аутосомах. Законы Менделя имели важное значение — именно на их основе происходило интенсивное развитие генетики на первом этапе. Они послужили основой для предположения о существовании в клетках (гаметах) наследственных факторов, контролирующих развитие признаков. Из законов Менделя следует, что эти факторы (гены) относительно постоянны, хотя и могут находиться в различных состояниях, парны в соматических клетках и единичны в гаметах, дискретны и могут вести себя независимо по отношению друг к другу. Всё это послужило в своё время серьёзным аргументом против теорий «слитной» наследственности и было подтверждено экспериментально.

Схема, иллюстрирующая единообразие гибридов первого поколения

Рис. 1. Схема, иллюстрирующая единообразие гибридов первого поколения F1 (первый закон Менделя) и расщепление признаков у потомства второго поколения F2 с преобладанием доминантного фенотипа над рецессивным в отношении 3:1 (второй закон Менделя); А — доминантный ген, а — рецессивный ген. Заштрихованный круг — доминантный фенотип, а светлый — рецессивный.

 

Схема, иллюстрирующая независимое комбинирование признаков

Рис. 2. Схема, иллюстрирующая независимое комбинирование признаков (третий закон Менделя). Наследование жёлтой (В) и зелёной (b) окраски семян, а также круглой (А) и морщинистой (а) их формы. А и В доминируют над аллелями а и b. Генотипы родителей и потомков обозначены комбинацией указанных букв, а четыре разных фенотипа — при помощи различной штриховки.


А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я